

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 2

About	OWASP	

The Open Web Application Security Project (OWASP) is a 501c3 non for profit educational
charity dedicated to enabling organizations to design, develop, acquire, operate, and
maintain secure software. All OWASP tools, documents, forums, and chapters are free and
open to anyone interested in improving application security. We can be found at
www.owasp.org.

OWASP is a new kind of organization. Our freedom from commercial pressures allows us to
provide unbiased, practical, cost effective information about application security.

OWASP is not affiliated with any technology company. Similar to many open source software
projects, OWASP produces many types of materials in a collaborative and open way. The
OWASP Foundation is a not-for-profit entity that ensures the project's long-term success.

	

	

 	

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 3

FOREWORD	
Insecure software is undermining our financial, healthcare, defense, energy, and other critical
infrastructure worldwide. As our digital, global infrastructure gets increasingly complex and
interconnected, the difficulty of achieving application security increases exponentially. We
can no longer afford to tolerate relatively simple security problems.

AIM & OBJECTIF

The goal of the OWASP Top 10 Proactive Controls project (OPC) is to raise awareness about
application security by describing the most important areas of concern that software
developers must be aware of. We encourage you to use the OWASP Proactive Controls to get
your developers started with application security. Developers can learn from the mistakes of
other organizations. We hope that the OWASP Proactive Controls is useful to your efforts in
building secure software.

CALL TO ACTION

Please don’t hesitate to contact the OWASP Proactive Control project with your questions,
comments, and ideas, either publicly to our email list or privately to jim@owasp.org.

COPYRIGHT AND LICENSE

This document is released under the Creative Commons Attribution ShareAlike 3.0 license.
For any reuse or distribution, you must make it clear to others the license terms of this work.

PROJECT LEADERS

Katy Anton Jim Bird Jim Manico

CONTRIBUTORS

Chris Romeo Dan Anderson David Cybuck

Dave Ferguson Josh Grossman Osama Elnaggar

Colin Watson Rick Mitchell And many more…

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 4

DOCUMENT	STRUCTURE	

This document is structured as a list of security controls. Each control is described as follows:

Description	

Implementation	

Vulnerabilities	Prevented	

• _____________
• _____________

References	

• _____________
• _____________

Tools	

• _____________
• _____________

	
	

Cx:	Control	Name		
	

OWASP Proactive Controls v 3.0

Implementation best practices
and examples to illustrate how to
implement each control.

List of prevented vulnerabilities or risks addressed
(OWASP TOP 10 Risk, CWE, etc.)

List of references for further study (OWASP Cheat sheet,
Security Hardening Guidelines, etc.)

Set of tools/projects to easily introduce/integrate
security controls into your software.

A detailed description of the control
including some best practices to
consider.

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 5

INTRODUCTION	
The OWASP Top Ten Proactive Controls 2018 is a list of security techniques that should be
considered for every software development project. This document is written for developers
to assist those new to secure development.

One of the main goals of this document is to provide concrete practical guidance that helps
developers build secure software. These techniques should be applied proactively at the early
stages of software development to ensure maximum effectiveness.

The	Top	10	Proactive	Controls	

The list is ordered by importance with list item number 1 being the most important:

C1: Define Security Requirements

C2: Leverage Security Frameworks and Libraries

C3: Secure Database Access

C4: Encode and Escape Data

C5: Validate All Inputs

C6: Implement Digital Identity

C7: Enforce Access Controls

C8: Protect Data Everywhere

C9: Implement Security Logging and Monitoring

C10: Handle All Errors and Exceptions

How	this	List	Was	Created	

This list was originally created by the current project leads with contributions from several
volunteers. The document was then shared globally so even anonymous suggestions could be
considered. Hundreds of changes were accepted from this open community process.

	

	

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 6

Target	Audience	

This document is primarily written for developers. However, development managers, product
owners, Q/A professionals, program managers, and anyone involved in building software can
also benefit from this document.

	

How	to	Use	this	Document	

This document is intended to provide initial awareness around building secure software. This
document will also provide a good foundation of topics to help drive introductory software
security developer training. These controls should be used consistently and thoroughly
throughout all applications. However, this document should be seen as a starting point rather
than a comprehensive set of techniques and practices. A full secure development process
should include comprehensive requirements from a standard such as the OWASP ASVS in
addition to including a range of software development activities described in maturity models
such as OWASP SAMM and BSIMM.

	

Link	to	the	OWASP	Top	10	Project	

The OWASP Top 10 Proactive Controls is similar to the OWASP Top 10 but is focused on
defensive techniques and controls as opposed to risks. Each technique or control in this
document will map to one or more items in the risk based OWASP Top 10. This mapping
information is included at the end of each control description.

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 7

Description	

A security requirement is a statement of needed security functionality that ensures one of
many different security properties of software is being satisfied. Security requirements are
derived from industry standards, applicable laws, and a history of past vulnerabilities. Security
requirements define new features or additions to existing features to solve a specific security
problem or eliminate a potential vulnerability.

Security requirements provide a foundation of vetted security functionality for an application.
Instead of creating a custom approach to security for every application, standard security
requirements allow developers to reuse the definition of security controls and best practices.
Those same vetted security requirements provide solutions for security issues that have
occurred in the past. Requirements exist to prevent the repeat of past security failures.

	

The	OWASP	ASVS	

The OWASP Application Security Verification Standard (ASVS) is a catalog of available security
requirements and verification criteria. OWASP ASVS can be a source of detailed security
requirements for development teams.

Security requirements are categorized into different buckets based on a shared higher order
security function. For example, the ASVS contains categories such as authentication, access
control, error handling / logging, and web services. Each category contains a collection of
requirements that represent the best practices for that category drafted as verifiable
statements.

Augmenting	Requirements	with	User	Stories	and	Misuse	Cases	

The ASVS requirements are basic verifiable statements which can be expanded upon with
user stories and misuse cases. The advantage of a user story or misuse case is that it ties the
application to exactly what the user or attacker does to the system, versus describing what
the system offers to the user.

C1:	Define	Security	Requirements		
	

OWASP Proactive Controls v 3.0

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 8

Here is an example of expanding on an ASVS 3.0.1 requirement. From the “Authentication
Verification Requirements” section of ASVS 3.0.1, requirement 2.19 focuses on default
passwords.

2.19 Verify there are no default passwords in use for the application framework or any
components used by the application (such as “admin/password”).

This requirement contains both an action to verify that no default passwords exist, and also
carries with it the guidance that no default passwords should be used within the application.

A user story focuses on the perspective of the user, administrator, or attacker of the system,
and describes functionality based on what a user wants the system to do for them. A user
story takes the form of “As a user, I can do x, y, and z”.

As	 a	 user,	 I	 can	 enter	 my	 username	 and	 password	 to	 gain	 access	 to	 the	
application.	

As	 a	 user,	 I	 can	 enter	 a	 long	 password	 that	 has	 a	 maximum	 of	 1023	
characters.	

When the story is focused on the attacker and their actions, it is referred to as a misuse case.

As	 an	 attacker,	 I	 can	 enter	 in	 a	 default	 username	 and	 password	 to	 gain	
access.	

This story contains the same message as the traditional requirement from ASVS, with
additional user or attacker details to help make the requirement more testable.

Implementation	

Successful use of security requirements involves four steps. The process includes discovering /
selecting, documenting, implementing, and then confirming correct implementation of new
security features and functionality within an application.

Discovery	and	Selection	

The process begins with discovery and selection of security requirements. In this phase, the
developer is understanding security requirements from a standard source such as ASVS and
choosing which requirements to include for a given release of an application. The point of
discovery and selection is to choose a manageable number of security requirements for this
release or sprint, and then continue to iterate for each sprint, adding more security
functionality over time.

	

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 9

Investigation	and	Documentation	

During investigation and documentation, the developer reviews the existing application
against the new set of security requirements to determine whether the application currently
meets the requirement or if some development is required. This investigation culminates in
the documentation of the results of the review.

	

Implementation	and	Test	

After the need is determined for development, the developer must now modify the
application in some way to add the new functionality or eliminate an insecure option. In this
phase the developer first determines the design required to address the requirement, and
then completes the code changes to meet the requirement. Test cases should be created to
confirm the existence of the new functionality or disprove the existence of a previously
insecure option.

Vulnerabilities	Prevented	

Security requirements define the security functionality of an application. Better security built
in from the beginning of an applications life cycle results in the prevention of many types of
vulnerabilities.

	

References	

• OWASP Application Security Verification Standard (ASVS)

• OWASP Mobile Application Security Verification Standard (MASVS)

• OWASP Top Ten

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 10

Description	

Secure coding libraries and software frameworks with embedded security help software
developers guard against security-related design and implementation flaws. A developer
writing an application from scratch might not have sufficient knowledge, time, or budget to
properly implement or maintain security features. Leveraging security frameworks helps
accomplish security goals more efficiently and accurately.

Implementation	Best	Practices	
When incorporating third party libraries or frameworks into your software, it is important to
consider the following best practices:

1. Use libraries and frameworks from trusted sources that are actively maintained and
widely used by many applications.

2. Create and maintain an inventory catalog of all the third party libraries.
3. Proactively keep libraries and components up to date. Use a tool like OWASP

Dependency Check and Retire.JS to identify project dependencies and check if there
are any known, publicly disclosed vulnerabilities for all third party code.

4. Reduce the attack surface by encapsulating the library and expose only the required
behaviour into your software.

Vulnerabilities	Prevented	

Secure frameworks and libraries can help to prevent a wide range of web application
vulnerabilities. It is critical to keep these frameworks and libraries up to date as described in
the using components with known vulnerabilities Top Ten 2017 risk.

Tools		
• OWASP Dependency Check - identifies project dependencies and checks for publicly

disclosed vulnerabilities
• Retire.JS scanner for JavaScript libraries

	

	

	

C2:	Leverage	Security	Frameworks	and	Libraries	
	

OWASP Proactive Controls v 3.0

C2:	Leverage	Security	Frameworks	and	Libraries	
	

OWASP Proactive Controls v 3.0

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 11

Description	

This section describes secure access to all data stores, including both relational databases and
NoSQL databases. Some areas to consider:

1. Secure queries
2. Secure configuration
3. Secure authentication
4. Secure communication

	

Secure	Queries	

SQL Injection occurs when untrusted user input is dynamically added to a SQL query in an
insecure manner, often via basic string concatenation. SQL Injection is one of the most
dangerous application security risks. SQL Injection is easy to exploit and could lead to the
entire database being stolen, wiped, or modified. The application can even be used to run
dangerous commands against the operating system hosting your database, thereby giving an
attacker a foothold on your network.

In order to mitigate SQL injection, untrusted input should be prevented from being
interpreted as part of a SQL command. The best way to do this is with the programming
technique known as ‘Query Parameterization’. This defense should be applied to SQL, OQL, as
well as stored procedure construction.

A good list of query parameterization examples in ASP , ColdFusion , C# , Delphi, .NET , Go ,
Java , Perl , PHP , PL/SQL , PostgreSQL, Python , R , Ruby and Scheme can be found at
http://bobby-tables.com and the OWASP Cheat Sheet on Query Parameterization.

Caution	on	Query	Parameterization	

Certain locations in a database query are not parameterizable. These locations are different
for each database vendor. Be certain to do very careful exact-match validation or manual
escaping when confronting database query parameters that cannot be bound to a
parameterized query. Also, while the use of parameterized queries largely has a positive
impact on performance, certain parameterized queries in specific database implementations
will affect performance negatively. Be sure to test queries for performance; especially
complex queries with extensive like clause or text searching capabilities.

C3:	Secure	Database	Access	
	

OWASP Proactive Controls v 3.0

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 12

Secure	Configuration	

Unfortunately, database management systems do not always ship in a “secure by default”
configuration. Care must be taken to ensure that the security controls available from the
Database Management System (DBMS) and hosting platform are enabled and properly
configured. There are standards, guides, and benchmarks available for most common DBMS.

Secure	Authentication	

All access to the database should be properly authenticated. Authentication to the DBMS
should be accomplished in a secure manner. Authentication should take place only over a
secure channel. Credentials must be properly secured and available for use.

Secure	Communication	

Most DBMS support a variety of communications methods (services, APIs, etc) - secure
(authenticated, encrypted) and insecure (unauthenticated or unencrypted). It is a good
practice to only use the secure communications options per the Protect Data Everywhere
control.

Vulnerabilities	Prevented	

• OWASP Top 10 2017- A1: Injection

• OWASP Mobile Top 10 2014-M1 Weak Server Side Controls

References	

• OWASP Cheat Sheet: Query Parameterization

• Bobby Tables: A guide to preventing SQL injection

• CIS Database Hardening Standards

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 13

Description	

Encoding and escaping are defensive techniques meant to stop injection attacks. Encoding
(commonly called "Output Encoding") involves translating special characters into some
different but equivalent form that is no longer dangerous in the target interpreter, for
example translating the “<” character into the < string when writing to an HTML page.
Escaping involves adding a special character before the character/string to avoid it being
misinterpreted, for example, adding a “\” character before a “"” (double quote) character so
that it is interpreted as text and not as closing a string.

Output encoding is best applied just before the content is passed to the target interpreter.
If this defense is performed too early in the processing of a request then the encoding or
escaping may interfere with the use of the content in other parts of the program. For
example if you HTML escape content before storing that data in the database and the UI
automatically escapes that data a second time then the content will not display properly due
to being double escaped.

Contextual	Output	Encoding	

Contextual output encoding is a crucial security programming technique needed to stop XSS.
This defense is performed on output, when you’re building a user interface, at the last
moment before untrusted data is dynamically added to HTML. The type of encoding will
depend on the location (or context) in the document where data is being displayed or stored.
The different types of encoding that would be used for building secure user interfaces
includes HTML Entity Encoding, HTML Attribute Encoding, JavaScript Encoding, and URL
Encoding.

Java	Encoding	Examples	

For examples of the OWASP Java Encoder providing contextual output encoding see: OWASP
Java Encoder Project Examples.

C4:	Encode	and	Escape	Data	
	

OWASP Proactive Controls v 3.0

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 14

.NET	Encoding	Examples	

Starting with .NET 4.5 , the Anti-Cross Site Scripting library is part of the framework, but not
enabled by default. You can specify to use AntiXssEncoder from this library as the default
encoder for your entire application using the web.conf settings. When applied is important to
contextual encode your output - that means to use the right function from the
AntiXSSEncoder library for the appropriate location of data in document.

PHP	Encoding	Examples	

Zend Framework 2

In Zend Framework 2 (ZF2), Zend\Escaper can be used for encoding the output. For
contextual encoding examples see Context-specific escaping with zend-escaper.

Other	Types	of	Encoding	and	Injection	Defense	

Encoding/Escaping can be used to neutralize content against other forms of injection. For
example, it's possible to neutralize certain special meta-characters when adding input to an
operating system command. This is called "OS command escaping", "shell escaping", or
similar. This defense can be used to stop "Command Injection" vulnerabilities.

There are other forms of escaping that can be used to stop injection such as XML attribute
escaping stopping various forms of XML and XML path injection, as well as LDAP distinguished
name escaping that can be used to stop various forms of LDAP injection.

Character	Encoding	and	Canonicalization	

Unicode Encoding is a method for storing characters with multiple bytes. Wherever input
data is allowed, data can be entered using Unicode to disguise malicious code and permit a
variety of attacks. RFC 2279 references many ways that text can be encoded.

Canonicalization is a method in which systems convert data into a simple or standard form.
Web applications commonly use character canonicalization to ensure all content is of the
same character type when stored or displayed.

To be secure against canonicalization related attacks means an application should be safe
when malformed Unicode and other malformed character representations are entered.

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 15

Vulnerabilities	Prevented	

• OWASP Top 10 2017 - A1: Injection

• OWASP Top 10 2017 - A7: Cross Site Scripting (XSS)

• OWASP Mobile_Top_10_2014-M7 Client Side Injection

References	

• XSS - General information

• OWASP Cheat Sheet: XSS Prevention - Stopping XSS in your web application

• OWASP Cheat Sheet: DOM based XSS Prevention

• OWASP Cheat Sheet: Injection Prevention

Tools	

• OWASP Java Encoder Project

• AntiXSSEncoder

• Zend\Escaper - examples of contextual encoding

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 16

Description	

Input validation is a programming technique that ensures only properly formatted data may
enter a software system component.

Syntax	and	Semantic	Validity	

An application should check that data is both syntactically and semantically valid (in that
order) before using it in any way (including displaying it back to the user).

Syntax val idity means that the data is in the form that is expected. For example, an
application may allow a user to select a four-digit “account ID” to perform some kind of
operation. The application should assume the user is entering a SQL injection payload, and
should check that the data entered by the user is exactly four digits in length, and consists
only of numbers (in addition to utilizing proper query parameterization).

Semantic val idity includes only accepting input that is within an acceptable range for the
given application functionality and context. For example, a start date must be before an end
date when choosing date ranges.

	

Whitelisting	vs	Blacklisting	

There are two general approaches to performing input syntax validation, commonly known as
blacklisting and whitelisting:

• Blacklisting or blacklist validation attempts to check that given data does not contain
“known bad” content. For example, a web application may block input that contains
the exact text <SCRIPT> in order to help prevent XSS. However, this defense could
be evaded with a lower case script tag or a script tag of mixed case.

• Whitelisting or whitelist validation attempts to check that a given data matches a set
of “known good” rules. For example a whitelist validation rule for a US state would be
a 2-letter code that is only one of the valid US states.

When building secure software, whitelisting is the recommended minimal approach.
Blacklisting is prone to error and can be bypassed with various evasion techniques and can be
dangerous when depended on by itself. Even though blacklisting can often be evaded it can

C5:	Validate	All	Inputs	
	

OWASP Proactive Controls v 3.0

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 17

often useful to help detect obvious attacks. So while whitelisting helps limit the attack surface
by ensuring data is of the right syntactic and semantic validity, blacklisting helps detect and
potentially stop obvious attacks.

Client	side	and	Server	side	Validation	

Input validation must always be done on the server-side for security. While client side
validation can be useful for both functional and some security purposes it can often be easily
bypassed. This makes server-side validation even more fundamental to security. For example,
JavaScript validation may alert the user that a particular field must consist of numbers but the
server side application must validate that the submitted data only consists of numbers in the
appropriate numerical range for that feature.

	

Regular	Expressions	

Regular expressions offer a way to check whether data matches a specific pattern. Let’s start
with a basic example.

The following regular expression is used to define a whitelist rule to validate usernames.

^[a-z0-9_]{3,16}$

This regular expression allows only lowercase letters, numbers and the underscore character.
The username is also restricted to a length of 3 and 16 characters.

Caution:	Potential	for	Denial	of	Service	

Care should be exercised when creating regular expressions. Poorly designed expressions may
result in potential denial of service conditions (aka ReDoS). Various tools can test to verify that
regular expressions are not vulnerable to ReDoS.

Caution:	Complexity	

Regular expressions are just one way to accomplish validation. Regular expressions can be
difficult to maintain or understand for some developers. Other validation alternatives involve
writing validation methods programmatically which can be easier to maintain for some
developers.

 	

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 18

Limits	of	Input	Validation	

Input validation does not always make data “safe” since certain forms of complex input may
be "valid" but still dangerous. For example a valid email address may contain a SQL injection
attack or a valid URL may contain a Cross Site Scripting attack. Additional defenses besides
input validation should always be applied to data such as query parameterization or escaping.

Challenges	of	Validating	Serialized	Data		

Some forms of input are so complex that validation can only minimally protect the
application. For example, it's dangerous to deserialize untrusted data or data that can be
manipulated by an attacker. The only safe architectural pattern is to not accept serialized
objects from untrusted sources or to only deserialize in limited capacity for only simple data
types. You should avoid processing serialized data formats and use easier to defend formats
such as JSON when possible.

If that is not possible then consider a series of validation defenses when processing serialized
data.

• Implement integrity checks or encryption of the serialized objects to prevent hostile
object creation or data tampering.

• Enforce strict type constraints during deserialization before object creation; typically
code is expecting a definable set of classes. Bypasses to this technique have been
demonstrated.

• Isolate code that deserializes, such that it runs in very low privilege environments,
such as temporary containers.

• Log security deserialization exceptions and failures, such as where the incoming type is
not the expected type, or the deserialization throws exceptions.

• Restrict or monitor incoming and outgoing network connectivity from containers or
servers that deserialize.

• Monitor deserialization, alerting if a user deserializes constantly.

	

 	

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 19

Unexpected	User	Input	(Mass	Assignment)	

Some frameworks support automatic binding of HTTP requests parameters to server-side
objects used by the application. This auto-binding feature can allow an attacker to update
server-side objects that were not meant to be modified. The attacker can possibly modify
their access control level or circumvent the intended business logic of the application with
this feature.

This attack has a number of names including: mass assignment, autobinding and object
injection.

As a simple example, if the user object has a field privilege which specifies the user's privilege
level in the application, a malicious user can look for pages where user data is modified and
add privilege=admin to the HTTP parameters sent. If auto-binding is enabled in an insecure
fashion, the server-side object representing the user will be modified accordingly.

Two approaches can be used to handle this:

• Avoid binding input directly and use Data Transfer Objects (DTOs) instead.

• Enable auto-binding but set up whitelist rules for each page or feature to define which
fields are allowed to be auto-bound.

More examples are available in the OWASP Mass Assignment Cheat Sheet.

Validating	and	Sanitizing	HTML	

Consider an application that needs to accept HTML from users (via a WYSIWYG editor that
represents content as HTML or features that directly accept HTML in input). In this situation
validation or escaping will not help.

• Regular expressions are not expressive enough to understand the complexity of
HTML5.

• Encoding or escaping HTML will not help since it will cause the HTML to not render
properly.

Therefore, you need a library that can parse and clean HTML formatted text. Please see the
XSS Prevention Cheat Sheet on HTML Sanitization for more information on HTML Sanitization.

Validation	Functionality	in	Libraries	and	Frameworks	

All languages and most frameworks provide validation libraries or functions which should be
leveraged to validate data. Validation libraries typically cover common data types, length

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 20

requirements, integer ranges, "is null" checks and more. Many validation libraries and
frameworks allow you to define your own regular expression or logic for custom validation in
a way that allows the programmer to leverage that functionality throughout your application.
Examples of validation functionality include PHP’s filter functions or the Hibernate Validator
for Java. Examples of HTML Sanitizers include Ruby on Rails sanitize method, OWASP Java
HTML Sanitizer or DOMPurify.

Vulnerabilities	Prevented	

• Input validation reduces the attack surface of applications and can sometimes make
attacks more difficult against an application.

• Input validation is a technique that provides security to certain forms of data, specific
to certain attacks and cannot be reliably applied as a general security rule.

• Input validation should not be used as the primary method of preventing XSS, SQL
Injection and other attacks.

References	

• OWASP Cheat Sheet: Input Validation
• OWASP Cheat Sheet: iOS - Security Decisions via Untrusted Inputs

• OWASP Testing Guide: Testing for Input Validation

Tools	

• OWASP Java HTML Sanitizer Project
• Java JSR-303/JSR-349 Bean Validation

• Java Hibernate Validator

• JEP-290 Filter Incoming Serialization Data

• Apache Commons Validator

• PHP’s filter functions

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 21

Description	

Digital Identity is the unique representation of a user (or other subject) as they engage in an
online transaction. Authentication is the process of verifying that an individual or entity is who they

claim to be. Session management is a process by which a server maintains the state of the
users authentication so that the user may continue to use the system without re-
authenticating. The NIST Special Publication 800-63B: Digital Identity Guidelines (Authentication and

Lifecycle Management provides solid guidance on implementing digital identity, authentication and
session management controls.

Below are some recommendations for secure implementation.

Authentication	Levels	

NIST 800-63b describes three levels of a authentication assurance called a authentication
assurance level (AAL). AAL level 1 is reserved for lower-risk applications that do not contain PII
or other private data. At AAL level 1 only single-factor authentication is required, typically
through the use of a password.

Level	1	:	Passwords	

Passwords are really really important. We need policy, we need to store them securely, we
need to sometimes allow users to reset them.

Password	Requirements	

Passwords should comply with the following requirements at the very least:

• be at least 8 characters in length if multi-factor authentication (MFA) and other
controls are also used. If MFA is not possible, this should be increased to at least 10
characters

• all printing ASCII characters as well as the space character should be acceptable in
memorized secrets

• encourage the use of long passwords and passphrases

C6:	Implement	Digital	Identity	
	

OWASP Proactive Controls v 3.0

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 22

• remove complexity requirements as these have been found to be of limited
effectiveness. Instead, the adoption of MFA or longer password lengths is
recommended

• ensure that passwords used are not commonly used passwords that have been
already been leaked in a previous compromise. You may choose to block the top 1000
or 10000 most common passwords which meet the above length requirements and
are found in compromised password lists. The following link contains the most
commonly found passwords:
https://github.com/danielmiessler/SecLists/tree/master/Passwords

	

Implement	Secure	Password	Recovery	Mechanism	

It is common for an application to have a mechanism for a user to gain access to their account
in the event they forget their password. A good design workflow for a password recovery
feature will use multi-factor authentication elements. For example, it may ask a security
question - something they know, and then send a generated token to a device - something
they own.

Please see the Forgot_Password_Cheat_Sheet and
Choosing_and_Using_Security_Questions_Cheat_Sheet for further details.

Implement	Secure	Password	Storage	

In order to provide strong authentication controls, an application must securely store user
credentials. Furthermore, cryptographic controls should be in place such that if a credential
(e.g., a password) is compromised, the attacker does not immediately have access to this
information.

PHP	Example	for	Password	Storage	

Below is an example for secure password hashing in PHP using password_hash() function
(available since 5.5.0) which defaults to using the bcrypt algorithm. The example uses a work
factor of 15.

<?php	

		$cost	=	15;	

		$password_hash	=	password_hash("secret_password",	PASSWORD_DEFAULT,	["cost"	=>	
$cost]);		

?>	

Please see the OWASP Password Storage Cheat Sheet for further details.

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 23

Level	2	:	Multi-Factor	Authentication	

NIST 800-63b AAL level 2 is reserved for higher-risk applications that contain "self-asserted PII
or other personal information made available online." At AAL level 2 multi-factor
authentication is required including OTP or other forms of multi-factor implementation.

Multi-factor authentication (MFA) ensures that users are who they claim to be by requiring
them to identify themselves with a combination of:

• Something you know – password or PIN

• Something you own – token or phone

• Something you are – biometrics, such as a fingerprint

Using passwords as a sole factor provides weak security. Multi-factor solutions provide a
more robust solution by requiring an attacker to acquire more than one element to
authenticate with the service..

It is worth noting that biometrics, when employed as a single factor of authentication, are not
considered acceptable secrets for digital authentication. They can be obtained online or by
taking a picture of someone with a camera phone (e.g., facial images) with or without their
knowledge, lifted from objects someone touches (e.g., latent fingerprints), or captured with
high resolution images (e.g., iris patterns). Biometrics must be used only as part of multi-
factor authentication with a physical authenticator (something you own). For example,
accessing a multi-factor one-time password (OTP) device that will generate a one-time
password that the user manually enters for the verifier.

Level	3	:	Cryptographic	Based	Authentication	

NIST 800-63b Authentication Assurance Level 3 (AAL3) is required when the impact of
compromised systems could lead to personal harm, significant financial loss, harm the public
interest or involve civil or criminal violations. AAL3 requires authentication that is "based on
proof of possession of a key through a cryptographic protocol." This type of authentication is
used to achieve the strongest level of authentication assurance. This is typically done though
hardware cryptographic modules.

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 24

Session	Management	

Once the initial successful user authentication has taken place, an application may choose to
track and maintain this authentication state for a limited amount of time. This will allow the
user to continue using the application without having to keep re-authentication with each
request. Tracking of this user state is called Session Management.

	

Session	Generation	and	Expiration	

User state is tracked in a session. This session is typically stored on the server for traditional
web based session management. A session identifier is then given to the user so the user can
identify which server-side session contains the correct user data. The client only needs to
maintain this session identifier, which also keeps sensitive server-side session data off of the
client.

Here are a few controls to consider when building or implementing session management
solutions:

• Ensure that the session id is long, unique and random.

• The application should generate a new session or at least rotate the session id during
authentication and re-authentication.

• The application should implement an idle timeout after a period of inactivity and an
absolute maximum lifetime for each session, after which users must re-authenticate.
The length of the timeouts should be inversely proportional with the value of the data
protected.

Please see the Session Management Cheat Sheet further details. ASVS Section 3 covers
additional session management requirements.

Browser	Cookies		

Browser cookies are a common method for web application to store session identifiers for
web applications implementing standard session management techniques. Here are some
defenses to consider when using browser cookies.

• When browser cookies are used as the mechanism for tracking the session of an
authenticated user, these should be accessible to a minimum set of domains and
paths and should be tagged to expire at, or soon after, the session’s validity period.

• The ‘secure’ flag should be set to ensure the transfer is done via secure channel only
(TLS).

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 25

• HttpOnly flag should be set to prevent the cookie from being accessed via JavaScript.

• Adding “samesite” attributes to cookies prevents some modern browsers from
sending cookies with cross-site requests and provides protection against cross-site
request forgery and information leakage attacks.

Tokens	

Server-side sessions can be limiting for some forms of authentication. "Stateless services"
allow for client side management of session data for performance purposes so they server has
less of a burden to store and verify user session. These "stateless" applications generate a
short-lived access token which can be used to authenticate a client request without sending
the user's credentials after the initial authentication.

JWT	(JSON	Web	Tokens)	

JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and self-
contained way for securely transmitting information between parties as a JSON object. This
information can be verified and trusted because it is digitally signed. A JWT token is created
during authentication and is verified by the server (or servers) before any processing.

However, JWT's are often not saved by the server after initial creation. JWT's are typically
created and then handed to a client without being saved by the server in any way. The
integrity of the token is maintained through the use of digital signatures so a server can later
verify that the JWT is still valid and was not tampered with since its creation.

This approach is both stateless and portable in the way that client and server technologies can
be different yet still interact.

Caution	

Digital identity, authentication and session management are very big topics. We're scratching
the surface of the topic of Digital Identity here. Ensure that your most capable engineering
talent is responsible for maintaining the complexity involved with most Identity solutions.

Vulnerabilities	Prevented	

• OWASP Top 10 2017 A2- Broken Authentication and Session Management

• OWASP Mobile Top 10 2014-M5- Poor Authorization and Authentication

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 26

References	

• OWASP Cheat Sheet: Authentication

• OWASP Cheat Sheet: Password Storage

• OWASP Cheat Sheet: Forgot Password

• OWASP Cheat Sheet: Choosing and Using Security Questions

• OWASP Cheat Sheet: Session Management
• OWASP Cheat Sheet: IOS Developer

• OWASP Testing Guide: Testing for Authentication

• NIST Special Publication 800-63 Revision 3 - Digital Identity Guidelines

Tools	

• Daniel Miessler: Most commonly found passwords

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 27

Description	

Access Control (or Authorization) is the process of granting or denying specific requests from
a user, program, or process. Access control also involves the act of granting and revoking
those privileges.

It should be noted that authorization (verifying access to specific features or resources) is not
equivalent to authentication (verifying identity).

Access Control functionality often spans many areas of software depending on the
complexity of the access control system. For example, managing access control metadata or
building caching for scalability purposes are often additional components in an access control
system that need to be built or managed.

There are several different types of access control design that should be considered.

● Discretionary Access Control (DAC) is a means of restricting access to objects (e.g.,
files, data entities) based on the identity and need-to-know of subjects (e.g., users,
processes) and/or groups to which the object belongs.

● Mandatory Access Control (MAC) is a means of restricting access to system resources
based on the sensitivity (as represented by a label) of the information contained in
the system resource and the formal authorization (i.e., clearance) of users to access
information of such sensitivity.

● Role Based Access Control (RBAC) is a model for controlling access to resources where
permitted actions on resources are identified with roles rather than with individual
subject identities.

● Attribute Based Access Control (ABAC) will grant or deny user requests based on
arbitrary attributes of the user and arbitrary attributes of the object, and
environment conditions that may be globally recognized and more relevant to the
policies at hand.

 	

C7:	Enforce	Access	Controls	
	

OWASP Proactive Controls v 3.0

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 28

Access	Control	Design	Principles	 	 	 	 	 	

The following "positive" access control design requirements should be considered at the
initial stages of application development.

1)	Design	Access	Control	Thoroughly	Up	Front	

Once you have chosen a specific access control design pattern, it is often difficult and time
consuming to re-engineer access control in your application with a new pattern. Access
Control is one of the main areas of application security design that must be thoroughly
designed up front, especially when addressing requirements like multi-tenancy and
horizontal (data dependent) access control.

Access Control design may start simple but can often grow into a complex and feature-heavy
security control. When evaluating access control capability of software frameworks, ensure
that your access control functionality will allow for customization for your specific access
control feature need.

2)	Force	All	Requests	to	Go	Through	Access	Control	Checks	

Ensure that all request go through some kind of access control verification layer.
Technologies like Java filters or other automatic request processing mechanisms are ideal
programming artifacts that will help ensure that all requests go through some kind of access
control check.

3)	Deny	by	Default	

Deny by default is the principle that if a request is not specifically allowed, it is denied. There
are many ways that this rule will manifest in application code. Some examples of these are:

1. Application code may throw an error or exception while processing access control
requests. In these cases access control should always be denied.

2. When an administrator creates a new user or a user registers for a new account, that
account should have minimal or no access by default until that access is configured.

3. When a new feature is added to an application all users should be denied to use that
feature until it's properly configured.

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 29

4)	Principle	of	Least	Privilege	

Ensure that all users, programs, or processes are only given as least or as little necessary
access as possible. Be wary of systems that do not provide granular access control
configuration capabilities.

5)	Don't	Hardcode	Roles	

Many application frameworks default to access control that is role based. It is common to
find application code that is filled with checks of this nature.

if	(user.hasRole("ADMIN"))	||	(user.hasRole("MANAGER"))	{	

deleteAccount();	

}	

Be careful about this type of role-based programming in code. It has the following limitations
or dangers.

● Role based programming of this nature is fragile. It is easy to create incorrect or
missing role checks in code.

● Role based programming does not allow for multi-tenancy. Extreme measures like
forking the code or added checks for each customer will be required to allow role
based systems to have different rules for different customers.

● Role based programming does not allow for data-specific or horizontal access control
rules.

● Large codebases with many access control checks can be difficult to audit or verify the
overall application access control policy.

Instead, please consider the following access control programming methodology:

if	(user.hasAccess("DELETE_ACCOUNT"))	{	

deleteAccount();	

}	

Attribute or feature-based access control checks of this nature are the starting point to
building well-designed and feature-rich access control systems. This type of programming
also allows for greater access control customization capability over time.

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 30

6)	Log	All	Access	Control	Events	

All access control failures should be logged as these may be indicative of a malicious user
probing the application for vulnerabilities.

Vulnerabilities	Prevented	

● OWASP Top 10 2017-A5-Broken Access Control
● OWASP Mobile Top 10 2014-M5 Poor Authorization and Authentication

References	

● OWASP Cheat Sheet: Access Control
● OWASP Cheat Sheet: iOS Developer - Poor Authorization and Authentication
● OWASP Testing Guide: Testing for Authorization

Tools	

● OWASP ZAP with the optional Access Control Testing add-on

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 31

Description	 	 	 	 	 	

Sensitive data such as passwords, credit card numbers, health records, personal information
and business secrets require extra protection, particularly if that data falls under privacy laws
(EU's General Data Protection Regulation GDPR), financial data protection rules such as PCI
Data Security Standard (PCI DSS) or other regulations.

Attackers can steal data from web and webservice applications in a number of ways. For
example, if sensitive information in sent over the internet without communications security,
then an attacker on a shared wireless connection could see and steal another user’s data.
Also, an attacker could use SQL Injection to steal passwords and other credentials from an
applications database and expose that information to the public.

Data	Classification	

It's critical to classify data in your system and determine which level of sensitivity each piece
of data belongs to. Each data category can then be mapped to protection rules necessary for
each level of sensitivity. For example, public marketing information that is not sensitive may
be categorized as public data which is ok to place on the public website. Credit card numbers
may be classified as private user data which may need to be encrypted while stored or in
transit.

	

Encrypting	Data	in	Transit	

When transmitting sensitive data over any network, end-to-end communications security (or
encryption-in-transit) of some kind should be considered. TLS is by far the most common and
widely supported cryptographic protocol for communications security. It is used by many
types of applications (web, webservice, mobile) to communicate over a network in a secure
fashion. TLS must be properly configured in a variety of ways in order to properly defend
secure communications.

The primary benefit of transport layer security is the protection of web application data from
unauthorized disclosure and modification when it is transmitted between clients (web
browsers) and the web application server, and between the web application server and back
end and other non-browser based enterprise components.

C8:	Protect	Data	Everywhere	
	

OWASP Proactive Controls v 3.0

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 32

Encrypting	Data	at	Rest	

The first rule of sensitive data management is to avoid storing sensitive data when at all
possible. If you must store sensitive data then make sure it's cryptographically protected in
some way to avoid unauthorized disclosure and modification.

Cryptography (or crypto) is one of the more advanced topics of information security, and one
whose understanding requires the most schooling and experience. It is difficult to get right
because there are many approaches to encryption, each with advantages and disadvantages
that need to be thoroughly understood by web solution architects and developers. In
addition, serious cryptography research is typically based in advanced mathematics and
number theory, providing a serious barrier to entry.

Instead of building cryptographic capability from scratch, it is strongly recommended that
peer reviewed and open solutions be used, such as the Google Tink project, Libsodium, and
secure storage capability built into many software frameworks and cloud services.

Mobile	Application:	Secure	Local	Storage	

Mobile applications are at particular risk of data leakage because mobile devices are regularly
lost or stolen yet contain sensitive data.

As a general rule, only the minimum data required should be stored on the mobile device.
But if you must store sensitive data on a mobile device, then sensitive data should be stored
within each mobile operating systems specific data storage directory. On Android this will be
the Android keystore and on iOS this will be the iOS keychain.

Key	Lifecycle	

Secret keys are used in applications number of sensitive functions. For example, secret keys
can be used to to sign JWTs, protect credit cards, provide various forms of authentication as
well as facilitation other sensitive security features. In managing keys, a number of rules
should be followed including:

● Ensure that any secret key is protected from unauthorized access
● Store keys in a proper secrets vault as described below
● Use independent keys when multiple keys are required
● Build support for changing algorithms and keys when needed
● Build application features to handle a key rotation

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 33

Application	Secrets	Management	

Applications contain numerous "secrets" that are needed for security operations. These
include certificates, SQL connection passwords, third party service account credentials,
passwords, SSH keys, encryption keys and more. The unauthorized disclosure or modification
of these secrets could lead to complete system compromise. In managing application secrets,
consider the following.

● Don’t store secrets in code, config files or pass them through environment variables.
Use tools like GitRob or TruffleHog to scan code repos for secrets.

● Keep keys and your other application-level secrets in a secrets vault like KeyWhiz or
Hashicorp’s Vault project or Amazon KMS to provide secure storage and access to
application-level secrets at run-time.

Vulnerabilities	Prevented	

● OWASP Top 10 2017 - A3: Sensitive Data Exposure
● OWASP Mobile Top 10 2014-M2 Insecure Data Storage

References	

● OWASP Cheat Sheet: Transport Layer Protection
● Ivan Ristic: SSL/TLS Deployment Best Practices
● OWASP Cheat Sheet: HSTS
● OWASP Cheat Sheet: Cryptographic Storage
● OWASP Cheat Sheet: Password Storage
● OWASP Cheat Sheet: IOS Developer - Insecure Data Storage
● OWASP Testing Guide: Testing for TLS

Tools	

● SSLyze - SSL configuration scanning library and CLI tool
● SSLLabs - Free service for scanning and checking TLS/SSL configuration
● OWASP O-Saft TLS Tool - TLS connection testing tool
● GitRob - Command line tool to find sensitive information in publicly available files on

GitHub
● TruffleHog - Searches for secrets accidentally committed
● KeyWhiz - Secrets manager
● Hashicorp Vault - Secrets manager
● Amazon KMS - Manage keys on Amazon AWS

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 34

Description	

Logging is a concept that most developers already use for debugging and diagnostic
purposes. Security logging is an equally basic concept: to log security information during the
runtime operation of an application. Monitoring is the live review of application and security
logs using various forms of automation. The same tools and patterns can be used for
operations, debugging and security purposes.

Benefits	of	Security	Logging	

Security logging can be used for:

1) Feeding intrusion detection systems
2) Forensic analysis and investigations
3) Satisfying regulatory compliance requirements

	

Security	Logging	Implementation	

The following is a list of security logging implementation best practices.

• Follow a common logging format and approach within the system and across systems
of an organization. An example of a common logging framework is the Apache
Logging Services which helps provide logging consistency between Java, PHP, .NET,
and C++ applications.

• Do not log too much or too little. For example, make sure to always log the
timestamp and identifying information including the source IP and user-id, but be
careful not to log private or confidential data.

• Pay close attention to time syncing across nodes to ensure that timestamps are
consistent.

 	

C9:	Implement	Security	Logging	and	Monitoring	
	

OWASP Proactive Controls v 3.0

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 35

Logging	for	Intrusion	Detection	and	Response	

Use logging to identify activity that indicates that a user is behaving maliciously. Potentially
malicious activity to log includes:

• Submitted data that is outside of an expected numeric range.

• Submitted data that involves changes to data that should not be modifiable (select
list, checkbox or other limited entry component).

• Requests that violate server-side access control rules.

• A more comprehensive list of possible detection points is available here.

When your application encounters such activity, your application should at the very least log
the activity and mark it as a high severity issue. Ideally, your application should also respond
to a possible identified attack, by for example invalidating the user’s session and locking the
user's account. The response mechanisms allows the software to react in realtime to possible
identified attacks.

Secure	Logging	Design	

Logging solutions must be built and managed in a secure way. Secure Logging design may include

the following:

• Encode and validate any dangerous characters before logging to prevent log injection
or log forging attacks.

• Do not log sensitive information. For example, do not log password, session ID, credit
cards, or social security numbers.

• Protect log integrity. An attacker may attempt to tamper with the logs. Therefore, the
permission of log files and log changes audit should be considered.

• Forward logs from distributed systems to a central, secure logging service. This will
sure log data cannot be lost if one node is compromised. This also allows for
centralized monitoring.

	

 	

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 36

References	

• OWASP AppSensor Detection Points - Detection points used to identify a malicious
user probing for vulnerabilities or weaknesses in application.

• OWASP Log injection

• OWASP Log forging

• OWASP Cheat Sheet: Logging How to properly implement logging in an application

• OWASP Development Guide: Logging
• OWASP Code Review Guide: Reviewing Code for Logging Issues

Tools	

• OWASP Security Logging Project

• Apache Logging Services

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 37

Description	

Exception handling is a programming concept that allows an application to respond to
different error states (like network down, or database connection failed, etc) in various ways.
Handling exceptions and errors correctly is critical to making your code reliable and secure.

Error and exception handling occurs in all areas of an application including critical business
logic as well as security features and framework code.

Error handling is also important from an intrusion detection perspective. Certain attacks
against your application may trigger errors which can help detect attacks in progress.

Error	Handling	Mistakes	

Researchers at the University of Toronto have found that even small mistakes in error
handling or forgetting to handle errors can lead to catastrophic failures in distributed
systems.

Mistakes in error handling can lead to different kinds of security vulnerabilities.

• Information leakage: Leaking sensitive information in error messages can
unintentionally help attackers. For example, an error that returns a stack trace or
other internal error details can provide an attacker with information about your
environment. Even small differences in handling different error conditions (e.g.,
returning "invalid user" or "invalid password" on authentication errors) can provide
valuable clues to attackers. As described above, be sure to log error details for
forensics and debugging purposes, but don’t expose this information, especially to an
external client.

• TLS bypass: The Apple goto "fail bug" was a control-flow error in error handling
code that lead to a complete compromise of TLS connections on apple systems.

• DOS: A lack of basic error handling can lead to system shutdown. This is usually a
fairly easy vulnerability for attackers to exploit. Other error handling problems could
lead to increased usage of CPU or disk in ways that could degrade the system.

C10:	Handle	all	Errors	and	Exceptions	
	

OWASP Proactive Controls v 3.0

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 38

Positive	Advice	

• Manage exceptions in a centralized manner to avoid duplicated try/catch blocks in
the code. Ensure that all unexpected behavior is correctly handled inside the
application.

• Ensure that error messages displayed to users do not leak critical data, but are still
verbose enough to enable the proper user response.

• Ensure that exceptions are logged in a way that gives enough information for support,
QA, forensics or incident response teams to understand the problem.

• Carefully test and verify error handling code.

References	

• OWASP Code Review Guide: Error Handling

• OWASP Testing Guide: Testing for Error Handling

• OWASP Improper Error Handling

• CWE 209: Information Exposure Through an Error Message

• CWE 391: Unchecked Error Condition

Tools	

• Error Prone - A static analysis tool from Google to catch common mistakes in error
handling for Java developers

• One of the most famous automated tools for finding errors at runtime is Netflix's
Chaos Monkey, which intentionally disables system instances to ensure that the
overall service will recover correctly.

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 39

Final	word	
This document should be seen as a starting point rather than a comprehensive set of
techniques and practices. We want to again emphasize that this document is intended to
provide initial awareness around building secure software.

Good next steps to help build an application security program include:

1) To understand some of the risks in web application security please review the OWASP
Top Ten and the OWASP Mobile Top Ten.

2) Per Proactive Control #1, a secure development program should include a
comprehensive list of security requirements based on a standard such as the OWASP
(Web) ASVS and the OWASP (Mobile) MASVS.

3) To understand the core building blocks of a secure software program from a more
macro point of view please review the OWASP OpenSAMM project.

If you have any questions for the project leadership team please sign up for our mailing list at
https://lists.owasp.org/mailman/listinfo/owasp_proactive_controls.

 OWASP Top Ten Proactive Controls Project

v 3.0 © 2002-2018 OWASP Foundation This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. 40

