Securing Containers on the High
AppSec SeaS

London 2nd-6th July 2018

)
| I
p) OWASP 7
B AppSec Europe O r e e
¢ London 2nd-6th July 2018 ™

Abdullah Munawar

*Director of Professional
Services at nVisium

*Helps clients build
application security programs

J?FL

e

v
-~ P

~

Jack Mannino
*CEO at nVisium, since 2009
*Helps make software security scale

*Hobbies: Scala, Go and Kubernetes

Contalner Security

OWASP -
e 3 ontainers are
London 2nd-6th July 2018

WHAT ARE CONTAINERS?

It depends on who you ask...

INFRASTRUCTURE APPLICATIONS

Package my application and all

e Sandboxed application

processes on a shared Linux
OS kernel

Simpler, lighter, and denser than
virtual machines

Portable across different
environments

of its dependencies

Deploy to any environment in
seconds and enable CI/CD

Easily access and share
containerized components

London 2nd-6th July 2018

U Containerized

verslon Control Cocker Trusted Reglstry Co

1501
E — EE#
T, - EaE
. r e
.
2
'
'

- LR

— LR

Mon-Production Environments | Productlon

Bulld Cluster |

Qi coooeccucee Secu rﬁity Opportun It es &

Reduced Attack Surface
Immutable Infrastructure
Isolation by Design

Automation and Repeatability

this glass is half full of himself

#ee: Who Does What Now?

Applications

U8 Eh R Gb G5 SN ER SN GR SD G5 SN GE G5 SR GS 6B 6N 6B @D Gh G5 Gh 6N ED G5 G0 AN D . G5 6N 6. -
|
| .
. Shared Services '
| databases | messaging | clustering & coordination | logging | :
Plathfm : application monitoring | user management & security | ... |
|
Team ! : . .
: Container Services :
I App & Policy definitions | Container Lifecycle mgmt. [Scheduling | Infrastructure |
| Automation | Service Discovery | Load Balancing | ... |
|

IT Ops Infrastructure Services
Team compute | network | storage

Design

AppSec Europe
London 2nd-6th July 2018

Model your containerized architecture and identify where security control
should be present.

Understand how the system will be used and abused

Beware of Bounded Contexts or tightly-coupled components!

Qi conoeciore Secure Architecture i

v
v
v
v
v
v
v

Orchestration & Management - Control Plane
Network Segmentation & Isolation

Encrypted communications

Authentication (container & cluster-level)
ldentity Management & Access Control
Secrets Management

Logging & Monitoring

OWASP
AppSec Europe

London 2nd-6th July 2018

Open Container Initiative (OCl) spec
promotes a broader set of container
tech (life beyond Docker)

Isolate containerized resources
differently

Goal is to prevent escaping from the
container

Isolation via Namespaces & Control
Groups

Isolation via Hypervisor

Picking the Right Container Runtime

Available Container Security Features, Requirements and Defaults

Security Feature LXC 2.0 Docker 1.11 CoreOS Rkt 1.3
User Namespaces Default Optional Experimental
Root Capability Dropping Weak Defaults Strong Defaults Weak Defaults
Procfs and Sysfs Limits Default Default Weak Defaults
Cgroup Defaults Default Default Weak Defaults
Seccomp Filtering Weak Defaults Strong Defaults Optional
Custom Seccomp Filters Optional Optional Optional
Bridge Networking Default Default Default
Hypervisor Isolation Coming Soon Coming Soon Optional
MAC: AppArmor Strong Defaults Strong Defaults Not Possible
MAC: SELinux Optional Optional Optional

No New Privileges Not Possible Optional Not Possible
Container Image Signing Default Strong Defaults Default

Root Interation Optional True False Mostly False

https://blog.jessfraz.com/post/containers-security-and-echo-chambers/

Leveraging Design

AppSec Europe

Lm«ﬂf@Zthm{:_” F:)isli:i:(setzlflfs; 1:(:)17EE;{EE(::l_‘_rfii: ;

We can solve security issues through patterns that lift security out of the
container itself. Example — Service Mesh.

Orchestrate Key & Certificate:
- Generation

C)
Cluster CA |:> - Deployment

- Rotation
- Revocation

Issue & mount as k8s secrets
Pod 42 . Pod

Service A [R Service
<> - ; > \" >
A Eovoy mTLS + Secure Naming EIkOY B
SAN: “spiffe://myorg.com/ns/prod/sa/foo” SAN: “spiffe://myorg.com/ns/prod/sa/bar”

- Namespace: prod - Namespace: prod
- Service account: foo - Service account: bar

Build

) S surone Securmg the Bmld Process

* Build steps focus on code repositories and container registries
* Run Tests -> Package Apps -> Build Image
e Build first level of security controls into containers

* Orchestration & management systems can override these controls and
mutate containers through an extra layer of abstraction

i oesecsuor Base | mage Man AJERIEH t —

e Focus on keeping the attack surface small

e Use base images that ship with minimal installed packages and
dependencies

e Use version tags vs. image:latest

e Use images that support security kernel features (seccomp, apparmor,
SELinux)

$ grep CONFIG SECCOMP= /boot/config-$ (uname -r)
S cat /sys/module/apparmor/parameters/enabled

4 >~§:f?5
Limiting Privileges
London 2nd-6th July 2018 ., : ; : o < i

Example — Ping command

 More often than not, your)
requires CAP_NET_RAW

container does not need root

e (Often, we only need a subset of We can drop everything else.

capabilities docker run -d --cap-drop=all -
-cap-add=net_raw my-image

e Limit access to underlying host

resources (network, storage, or IPC)

N OWASP .
ernel Hardening
g London 2nd-6th July 2018 ;

, , , "defaultAction": "SCMP_ACT_ERRNO",
* Restrict the actions a container "architectures": [|
"SCMP_ARCH_X86_64", ‘\

""'SCMP_ARCH_X86",
can perform 1SCMP_ARCH X32"
1,

 Seccomp is a linux kernel feature "sysi:alls": [

that allows you to filter dangerous i tion NSCHPLACT ALLOW™.

"argS": []
syscalls
syscalls
, "name" : "bind";“"’#ﬂﬁﬂﬂfﬂﬂ

* Docker has a great default profile "action": "SCMP_ACT ALLOW",

"args": []

to get started

= Mandatory Access Control (MAC)

e L .r-. ‘.ﬂ -

e SELinux and AppArmor allow o0 2 T L e
#include <tunables/global=
you to set granular controls

profile no-ping flags=(attach_disconnected, mediate_deleted) ({

on files and network access. #include <abstractions/base>

e Limits what a process can network inet tep,
access or do etk net tomp

e Logging to identify violations deny nevwork rav. | g .
(during testing and S ek paeken \ y
production) .

e Docker leads the way with its
default AppArmor profile

root@bda5aza938b9:~# ping B.8.8.8
ping: Lacking privilege for raw socket.

P Container Package Management

e Vulnerabilities can possibly exist in: | .
e Container configurations Cl.a I r
e (Container packages
e Application Libraries /
e Solutions:
e (lair Il
e Dependency Check oL

+ Brigade BRIGADE

e Commercial tools ‘;;?.q

DEPENDENCY-

Ship

) OUWJASP
AppSec Europe

London 2nd-6th July 2018

e Securely move the container from registry -> runtime environment
e Controlled container promotion and deployment

e \alidate the integrity of the container

e \alidate security pre-conditions

Pz Validating Integrity & Signing

e Ensures the integrity of
the images and trusted

publisher.
e Sign to validate pipeline
phases o~
e Example — Docker o

Content Trust & Notary
e Consume only trusted
content for tagged Docker

builds

s Valldating Security Pre-Conditions

B e | 5
| = - 4

apiVersion: extensions/vlbetal
kind: PodSecurityPolicy
metadata:
name: restrictive-pod-security-policy
annotations:
seccomp.security.alpha.kubernetes.io/defaultProfileName: docker/default
.] apparmor.security.beta.kubernetes.io/allowedProfileNames: 'runtime/default’
o Al IOW O r d e ny a CO nta I n e r S Cl u Ste r seccomp.security.alpha.kubernetes.io/allowedProfileNames: docker/default
apparmor.security.beta.kubernetes.io/defaultProfileName: 'runtime/default’
[} [spec:
ivileged: fal
a d m I SS I O n z{i;;PiJg‘jileg:E:ialation: false
. o requiredDropCapabilities:
e C(Centralized interfaces and eoss
- 'configMap'
: : - 'emptyDir'
Valldatlon - 'projected'
- 'secret'
. 1 . - 'downwardAPI'
e Mutate a container's security - “persistentiolunectain’
hostNetwork: false
. - hostIPC: false
before admission s ot
rule: MustRunAsNonRoot

e Example — Kubernetes calls this a

supplementalGroups:

PodSecurityPolicy

Forbid adding the root group.

- min: 1
max: 65535
fsGroup:
rule: 'MustRunAs'
ranges:
Forbid adding the root group.
- min: 1
max: 65535

readOnlyRootFilesystem: true

Run

AppSec Europe

London 2nd-6th July 2018

Typically, containers are managed,
scheduled, and scaled through
orchestration systemes.

Kubernetes, Mesos, Docker Swarm,
AWS ECS, etc.

e Cluster/Service authentication

* |dentity Management & Access
Control

e Policy & Constraint Enforcement

* Propagation of secrets

* Logging & Monitoring

-

Master(s)

etcd API Server

Scheduler

Controller Manager

p
Node

Docker Kubelet

‘ Kubernetes Proxy ’

"

J

p
Node

Docker Kubelet

| Kubernetes Proxy |

N

S

p
Node

Docker Kubelet

‘ Kubernetes Proxy

A

J

Example — Kubernetes
Control Plane

) e Control Plane Hardening -

e Control plane manages & schedules containers

e Critical infrastructure; keys to the kingdom

e Restrict network access to control plane components
e |solate components and containerized workloads

London 2nd-6th July 2018

Fopses s Management APIs

e Deploy, modify, and kill services

e Run commands inside of containers

e Kubernetes, Marathon, and Swarm
APl work similarly

e Frequently deployed without
authentication or access control

OWARSP

Do s A u thenticatl on

// computeDetachedSig takes content and token details and computes a detached
// IWS signature. This is described in Appendix F of RFC 7515. Basically, this
Jf is a regular JWS with the content part of the signature elided.

func computeDetachedSig(content, tokenID, tokenSecret string) (string, error) {

e Authenticate subjects (users and

Key: [1byte(tokenSecret),
KeyID: tokenID,

service accounts) to the cluster }

opts := &jose.SignerOptions{

. . f/ Si his i ic key, =i d ' ically imclud

e Authentication occurs at several layers [S e e e e e e oty e
I/ licitly.

Extizﬂegggsf map[jose.HeaderKey] interface{}{

e Authenticating APl subjects

® AUt 1enticating nOdes to the CIUSter signer, err := jose.NewSigner(jose.SigningKey{Algorithm: jose.H5256, Key: jwk}, opts)

. Aut 1enticati ng Se rvices to each return ™", fmt.Errorf("can't make a H5256 signer from the given token: %v", err)
¥
Ot h e r ix:sér;eﬂr!rz::iij.?ner.Sign{ [1byte(content))
return ", fmt.Errorf("can't H5256-sign the given token: %v", err)

Avoid sharing service accounts across

fullSig, err := jws.CompactSerialize()
. . if err != nil {
mUItlple SerVIceS! return ™", fmt.Errorf("can't serialize the given token: %v", err)

}
return stripContent(fullSig)

}

Example — K8s JWT Generator

Authorization & Access -

ey

Subjects should only have
access to the resources they
need

Limit what a single hostile user
or container can achieve)
Multiple vantage points - to the
APIl, between containers,
between control plane
components

K8s - Create a Role

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: production
name: read-pods
rules:
- apiGroups: [""] # "" indicates the core API group
resources: ["pods"]
verbs: ["get", "watch", "list"]

K8s - Bind a Subject to the Role

kind: RoleBinding
apiVersion: rbac.authorization.k8s.1io/v1
metadata:
name: read-pods
namespace: production
subjects:
- kind: ServiceAccount
name: joe-dev # Name is case sensitive
roleRef:
kind: Role #this must be Role or ClusterRole
name: read-pods # name of the Role or ClusterRole
apiGroup: rbac.authorization.k8s.1io

A)
= Fan
- u
Logging and
London 2nd-6th July 2018

 Container lifecycle is short and unpredictable
* Visibility through telemetry and logs
 Tag and label assets for context and de-duplication
* Focus on visibility at these levels
* Application
* QOperating System
* Container
 Orchestration & Management
* Infrastructure

Secrets Management

ey

e Safely inject secrets into containers at
runtime # Has known vulnerabilities: you shouldn't use this in production, if you like
 Reduced footprint for leaking secrets 0% gotang:1.10.2

W Jack Mannino =jack@nvisium.com=

 Dynamic key generation and rotation

USER root

ENV ROOT-PW s3curitahl
/ \ -
v v RUN apt-get update &% apt-get install -y apt-transport-https

* Anti-patterns:
Install vulnerable bash version for ShellShock.
i Ha rd COded — RUN apt-get install -y build-essential wget

RUN wget https://ftp.gnu.org/gnu/bash/bash-4.3.tar.gz &b
tar zxvT bash-4.3.tar.gz && %

e Environment variables b ey e

Joonfigure && N

* Limit the scope of subjects that can make dnetatl
retrieve secrets N aicic Japp

ADD . fapp/

WORKDIR fapp

RUM go build -0 main .
CMD ["/app/main”]

OWARSP

e Secrets Management

Docker

echo <secret> | docker secret create some-secret

Kubernetes
kubectl create secret generic db-user-pw --from-file=./username.txt --
from-file=./password.txt

kubectl create —f ./secret.yaml

Nothing Is Perfect

kubernetes Q, Search

= Config and storage > Secrets > jack-pass

Namespace)
Details
default
Name: jack-pass
Overview
Namespace: default
Workloads Creation time: 2017-10-19T18:36

Daemon Sets

Deployments

Data
Jobs
Pods
Q password.txt: jack555
Replica Sets

L Q username.txt: admin
Replication Controllers

Stateful Sets

Y oo Bewarﬁe of Plain Te_Xt StOr age

S e B

Prior to 1.7, secrets were stored in

plain text at-rest
S Is /etc/foo/

username
password

S cat /etc/foo/username
admin

S cat /etc/foo/password
1f2d1e2e67df

As of v1.7+, k8s can encrypt
your secrets in etcd

Not perfect at all, either.

kind: EncryptionConfig
apiVersion: vl
resources:
— resources:
- secrets
providers:
- aescbc:
keys:
- name: keyl
secret: YOURKEYHERE
- identity: {}

==z Dynamic Loading & Rotation

el

E-- §

8443
5 |Mounted at
Ivarfrun/secrets/kubernetes.io/serviceaccount/
3-tls
container
1-tls
Yy
8200
5 |certs secret
DC
OpenShift | _ 5 _1ls vault s |token-reviewer service
Master API account secret
1 C |vault-config config map
file-backend

https://blog.openshift.com/vault-integration-using-kubernetes-
authentication-method/ encrypted

slore

PJuzee Policy & Constraint Enforcement

I i
e Harden by applying a Security

. Allow Privilege X
Context at the pod or container Escalation
|eve| Capabilities
] : Privileged
e Mutate the container's Read-Only Root
. . Filesystem
configuration as needed
]]] Run as Non Root X
e i.e- overrides a Dockerfile Run as User X
SELinux Options X
FS Group X
Supplemental X
Groups

Example — K8s SecurityContext

- u
Conclusion
London 2nd-6th July 2018 :

e Secure your container ecosystem and supply
chain, not just the runtime

* You probably don't need root — start
with minimally privileged containers

* Focus on layered security and strong isolation

* Ensure visibility from a developer's laptop to
running in production

- "T?g';,_
$) OWASP I .
anks! Keep In Touc
b London 2nd-6th July 2018] .

Abdullah Munawar Jack Mannino
@amanofwar @jack_mannino
Abullah@nvisium.com Jack@nvisium.com

