
Securing Containers on the High 

Seas Jack Mannino & Abdullah Munawar



Who Are We?

Abdullah Munawar

•Director of Professional 
Services at nVisium

•Helps clients build 
application security programs

Jack Mannino

•CEO at nVisium, since 2009

•Helps make software security scale

•Hobbies: Scala, Go and Kubernetes



Container Security 

Lifecycle

Design Build Ship Run



Containers are __



Containerized 

Architecture



Security Opportunities & 

Optimism

Reduced Attack Surface

Immutable Infrastructure

Isolation by Design

Automation and Repeatability



Who Does What Now?



Design



Design

Model your containerized architecture and identify where security control 
should be present.

Understand how the system will be used and abused

Beware of Bounded Contexts or tightly-coupled components!



Secure Architecture

 Orchestration & Management - Control Plane
 Network Segmentation & Isolation
 Encrypted communications
 Authentication (container & cluster-level)
 Identity Management & Access Control
 Secrets Management
 Logging & Monitoring



Picking the Right Container Runtime

• Open Container Initiative (OCI) spec 
promotes a broader set of container 
tech (life beyond Docker)

• Isolate containerized resources 
differently

• Goal is to prevent escaping from the 
container

• Isolation via Namespaces & Control 
Groups

• Isolation via Hypervisor
https://blog.jessfraz.com/post/containers-security-and-echo-chambers/



Leveraging Design
Patterns for Security

We can solve security issues through patterns that lift security out of the 
container itself. Example – Service Mesh.



Build



Securing the Build Process

• Build steps focus on code repositories and container registries

• Run Tests -> Package Apps -> Build Image

• Build first level of security controls into containers

• Orchestration & management systems can override these controls and 
mutate containers through an extra layer of abstraction



Base Image Management

• Focus on keeping the attack surface small
• Use base images that ship with minimal installed packages and 

dependencies
• Use version tags vs. image:latest
• Use images that support security kernel features (seccomp, apparmor, 

SELinux)

$ grep CONFIG_SECCOMP= /boot/config-$(uname -r)

$ cat /sys/module/apparmor/parameters/enabled



Limiting Privileges

• More often than not, your 

container does not need root

• Often, we only need a subset of 

capabilities

• Limit access to underlying host 

resources (network, storage, or IPC)

docker run -d --cap-drop=all -
-cap-add=net_raw my-image

Example – Ping command 
requires CAP_NET_RAW

We can drop everything else.



Kernel Hardening

• Restrict the actions a container 

can perform

• Seccomp is a linux kernel feature 

that allows you to filter dangerous 

syscalls

• Docker has a great default profile 

to get started



Mandatory Access Control (MAC)

• SELinux and AppArmor allow 
you to set granular controls 
on files and network access.

• Limits what a process can 
access or do

• Logging to identify violations 
(during testing and 
production)

• Docker leads the way with its 
default AppArmor profile



Container Package Management

• Vulnerabilities can possibly exist in:
• Container configurations
• Container packages
• Application Libraries

• Solutions:
• Clair
• Dependency Check
• Brigade
• Commercial tools



Ship



Ship

• Securely move the container from registry -> runtime environment
• Controlled container promotion and deployment
• Validate the integrity of the container
• Validate security pre-conditions



Validating Integrity & Signing 

Builds
• Ensures the integrity of 

the images and trusted 
publisher.

• Sign to validate pipeline 
phases

• Example – Docker 
Content Trust & Notary

• Consume only trusted 
content for tagged Docker 
builds



• Allow or deny a container's cluster 
admission

• Centralized interfaces and 
validation

• Mutate a container's security 
before admission

• Example – Kubernetes calls this a 
PodSecurityPolicy

Validating Security Pre-Conditions



Run



Run

Typically, containers are managed, 
scheduled, and scaled through 
orchestration systems.

Kubernetes, Mesos, Docker Swarm, 
AWS ECS, etc.

• Cluster/Service authentication
• Identity Management & Access 

Control
• Policy & Constraint Enforcement
• Propagation of secrets
• Logging & Monitoring

Example – Kubernetes 
Control Plane



Control Plane Hardening

• Control plane manages & schedules containers
• Critical infrastructure; keys to the kingdom
• Restrict network access to control plane components
• Isolate components and containerized workloads



Management APIs

• Deploy, modify, and kill services
• Run commands inside of containers
• Kubernetes, Marathon, and Swarm 

API work similarly
• Frequently deployed without 

authentication or access control



Authentication

• Authenticate subjects (users and 
service accounts) to the cluster

• Authentication occurs at several layers
• Authenticating API subjects
• Authenticating nodes to the cluster
• Authenticating services to each 

other
Avoid sharing service accounts across 
multiple services!

Example – K8s JWT Generator



Authorization & Access 
Control

• Subjects should only have 
access to the resources they 
need

• Limit what a single hostile user 
or container can achieve)

• Multiple vantage points - to the 
API, between containers, 
between control plane 
components

K8s - Create a Role

K8s - Bind a Subject to the Role



Logging and 

Monitoring
• Container lifecycle is short and unpredictable
• Visibility through telemetry and logs
• Tag and label assets for context and de-duplication
• Focus on visibility at these levels

• Application
• Operating System
• Container
• Orchestration & Management
• Infrastructure



• Safely inject secrets into containers at 
runtime

• Reduced footprint for leaking secrets
• Dynamic key generation and rotation 

is ideal
• Anti-patterns:

• Hardcoded
• Environment variables

• Limit the scope of subjects that can 
retrieve secrets

Secrets Management



Secrets Management

Docker
docker run –it –e “DBUSER=dbuser” –e “DBPASSWD=dbpasswd” 
mydbimage

echo <secret> | docker secret create some-secret

Kubernetes
kubectl create secret generic db-user-pw --from-file=./username.txt --
from-file=./password.txt

kubectl create –f ./secret.yaml



Nothing is Perfect



Beware of Plain Text Storage

Prior to 1.7, secrets were stored in 
plain text at-rest
$ ls /etc/foo/
username
password 

$ cat /etc/foo/username

admin 
$ cat /etc/foo/password 
1f2d1e2e67df

As of v1.7+, k8s can encrypt 
your secrets in etcd

Not perfect at all, either.



Dynamic Loading & Rotation

https://blog.openshift.com/vault-integration-using-kubernetes-
authentication-method/



Policy & Constraint Enforcement

• Harden by applying a Security 
Context at the pod or container 
level
• Mutate the container's 
configuration as needed

• i.e- overrides a Dockerfile

Setting PodSecurityContext SecurityContext

Allow Privilege 
Escalation

X

Capabilities X

Privileged
Read-Only Root 

Filesystem

X

Run as Non Root X X

Run as User X X

SELinux Options X

FS Group X

Supplemental 
Groups

X

Example – K8s SecurityContext



Conclusion

• Secure your container ecosystem and supply 
chain, not just the runtime

• You probably don't need root – start 
with minimally privileged containers

• Focus on layered security and strong isolation
• Ensure visibility from a developer's laptop to 

running in production



Thanks! Keep in Touch

Abdullah Munawar
@amanofwar
Abullah@nvisium.com

Jack Mannino
@jack_mannino
Jack@nvisium.com


